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This paper compares the performance of semiconductor and high-T c superconductor switches as they are

used in delay-line-type microwave and millimeter-wave phase shifters. We compare such factors as their

/-arios of the off-to-on resistances, parasitic rcactances, power consumption, speed, input-to-output

isolation, ease of fabrication, and physical dimensions. Owing to their almost infinite off-to-on resistance

ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite

suitable for use in microwave phase shifters; their only drawbacks are their speed and size.

We also discuss the SUPERFET, a novel device whose operation is based on the electric field effect in

ldgh-T c ceramic superconductors. Preliminary results indicate that the SUPERFET is fast and that it can

be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect

transistors.

L INTRODUCTION

Phase shifters are an indispensable part of phased-array microwave antenna systems. There axe many

different realizations of phase shifters, which can be broadly divided into analog and digital types [1].

Here we confine ourselves to only digital and planar configurations. Specifically, we will discuss

microstrip line phase shifters [2].
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Three parameters can be altered to cause a phase shift in an electromagnetic wave traveling on a microstrip

line. These are velocity [3], path length [1], and reactance [4] (or the load in a transmission line that

effectively changes the group velocity). Changing the velocity or path length is straightforward. Changing

reacta.nces is more involved and it is usually so frequency sensitive that it is rarely used except where

frequency-dependent phase shift is sought. Changing the wave velocity is relatively easy in a traditional

waveguide; so it is used extensively with rectangular waveguides, though not in microstripline-based

systems. Inducing a change in the wave velocity requires an electro-optic substrate such as GaAs, whose

permittivity or refractive index can be altered by an external electric field (only recently has attention been

given to this approach [5]). Routing the microwave through paths of different length (delay lines) is a

practical way of inducing phase shift that we will consider in more detail.

Figure 1 shows a delay line phase shifter that uses electronic switches to route the microwave through

different paths. Idea.lly, these switches would have an infinite off-to-on resistance ratio and would not

interfere with the propagation of the microwave; also there would be no interaction between the control

signal of the switch, and the microwave. In the following sections, we will discuss semiconductor and

superconductor switches and we will compa.m their performances.
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Figure 1 Delay line Phase shifter.
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II. SEMICONDUCTOR SWITCHES

PIN diodes [6] and field effect transistors [7] are used as semiconductor switx:hcs in delay-line phase

shffters. PIN diodes are also used as varactors in analog phase shiRers, as are FETs in amplifier-type

phase shif',.ers. Dual-gate FETs [8] have become popular in analog phase shifters because a single device

can both amplify and switch a signal; essentially they are de-gain-controlled microwave amplifiers and

phase shifters.

PIN diodes are extensivelydiscussed in the literature(forexample, see referenceI).They

arcminority..carricrdevicesand,therefore,theirpower consumptions archigh.They have a storagedelay

time of 0.2 _tsand "on" resistanceof 0.5-5£2 [9,10],but arcrelativelylossywith an "off'resistanceof I-

4 M.(2 and capacitanceof0.4-0.8pF [9,10].The physicaldimensions of a low-power PIN diodein the



unpackaged planar form is approximately 251.tm x 1001.tm. However, since they require a biasing circuit

their overall effective dimensions are much larger.

MESFETs and MISFETs. These devices have been developed extensively in recent years, and they

are used in microwave monolithic integrated circuits (usually GaAs based) successfully. They are

majority-carrier devices and require little power. They have an "on" resistance of 0.5-5 f2 [9,10], but are

lossy with an "off" resistance of 1-40 KI'_ and drain-to-source capacitance of 0.4-0.8 pF [9,10]. Their

switching speed is as high as 0.1 ns. Low-power FETs in the unpackaged planar form are 100p.m x

100p.m. However, since they require a biasing circuit, their overall effective dimensions are much larger.

IH. SUPERCONDUCTING SWITCHES

Superconductor switches that can be used in phase shifters are of the following types: (1) bolometric

devices heated by light [ 11,12] or by an overlay polysilicon or metallic heater, (2) devices photonically

controlled by laser excitation [13], (3) magnetic field effect devices controlled by the magnetic field of an

inductor loop [ 14], (4) transverse electric field effect devices controlled by charging a gate electrode [15-

21], and (5) longitudinal electric field effect devices controlled by current density [21].

Bolometric Devices. In Figure 2a, we show a phase shifter that uses superconducting-normal-

superconducting switches in place of FET/diode switches. The switches are fabricated from high

temperature thin films of YBa2Cu307. x. The switches operate in the bolometric mode with the f'flm near

its transition temperature. Radiation from a light source raises the temperature higher than the film's T c

and consequently causes the film to become resistive. When the light is on the microwave signal travels

past the switch; it is reflected when the light is off. To achieve the desired phase shift, the paired switches

on the same side are illuminated. Figure 2b shows the predicted behavior for a phase shifter with an R s
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a) A delay line phase shifter with bolometric switches, b) Insertion and reflection

losses of a delay line phase shifter that uses superconducting switches.
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value that is the same as gold at 77 K (0.1 f'/) and having a R s of 1_ in the normal state. It has an

exceptionally narrow insertion loss envelope and excellent return loss.

Bolometric switches have an "on" resistance of nearly 0 f_ and an "off' resistance of 0.1-4 kfL In

microwave application, their kinetic inductance and skin resistance must also be taken into account in

calculating their "on" impedance. These switches are approximately 25_m x 10001ma. Their speeds,

however, are very low-around ls. They can be redesigned, however, to be as fast as 101.ts [12]

We have fabricated the above phase shifter and we now discuss the bolometric response of one of its

switches. Figure 3 shows the resistance versus temperature curve of this switch. The transition width is

somewhat large-about 1 K. This is mainly due to the very narrow channel. Figure 3 also shows the

bolometric response of this switch. We will report the microwave characteristics of this phase shifter in

the future.
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Figure 3 Resistance versus temperature

graph (solid line) and the bolometic

response of a superconducting switch. To

obtain the bolometric response, the device

was illuminated with a 5row HeNe laser

that was chopped at 4 I--Iz. The channel

width was 10 lain and the channel length

was b.5 ram.

A typical fabrication sequence starts with the growth of the I-ITS film, followed by its patterning, etching,

and mention. Growth of the YBa2Cu307. x films on microwave substrates is discussed in references

23-26. Patterning is discussed comprehensively in reference 25.

Bolometric devices are quite easy to fabricate. After the film is grown, it is patterned and the bolometer is

defined. Then the devices are annealed in an oxygen rich environment to increase the oxygen content in

the film and to compensate for any losses that might have oeetnr, d in the previous stages. In reference 25

we discussed the side effects of the patterning of t-ITS YBa2Cu307. x films comprehensively. We

4



concludedthatpatterninglowerstheTc of thefilm byonlyafractionof adegree-forall practical

purposes,negligible.A moresignificantproblemisthepotentialnon-uniformityof Tc overthe film. In

the case of the bolometric devices, where all the devices are thermally biased near their transition

temperature, a spatial non-uniformity in T c is not acceptable and local control over the bias temperature

may be required. The degree of the spatial non-uniformity of T c depends on the growth technique. In

laser ablated-films, non-uniformity oft c is only fraction of a degree over a 1 cm 2 wafer.

As growth techniques mature, highly uniform films will become a reality and the scatter of T c of these

devices may soon be within 1/10 of a degree for a 1 cm 2 microwave circuit. Meanwhile, we may solve

this problem by locally tailoring the T c of a device by laser heating, which causes a preferential oxygen

loss in the FITS film of the device and therefore lowers its T c. This technique can be used to lower the T c

of all the devices on a wafer accurately to 77 K so that rather inexpensive liquid nitrogen can be used

directly without a temperature control unit.

Photonic Devices. Non-equilibrium optical excitation can be used to switch the state of a

superconductor to normal conductivity [ 13]. In the case of ceramic superconductors, the coupling cross

section between the photons and charge carriers is not known yet. It is not clear whether this cross section

is large enough to allow the useful employment of this excitation process in superconducting switches.

The speed of such a device, however, will surpass all other devices discussed here.

Magnetic Field Effect Devices.In these devices, an inductive loop generates a magnetic field parallel

to the a-b plane of a YBa2Cu307. x film as shown in Figure 4. YBa2C'u307. x is a type II superconductor

and vortices can be easily generated in it by relatively low magnetic fields [14]. A vortex containing a

quantum of magnetic flux in the presence of a current leads to dissipation of energy in the film, so vortices

can be generated to effectively increase the resistivity of the film or to destroy its superconductivity.

Gold/Titanium
Gate

Su'

Channel

constant currem"

Figure 4 Schematic of a magnetically

controlled superconducting switch.

DIELECTRIC SUBSTRATE J¢'

MgO, LAGaO 3 , LaA](2 3 '¢
ZrO 2, SrTiO 3
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Transverse Electric Field Effect Devices. These devices operate on a principle very similar to

that of FET devices, where the electric field effect controls the conductivity of the channel. Because T c is

a function of the carrier density in superconductors[15-22], we propose to control T c by electrostatically

controlling the surface charge density of a superconducting channel [21]. The feasibility of this idea has

already been demonstrated in normal superconductors [15-17]. In normal superconductors, T c is a weak

functionof theelectricfield.However, inceramic superconductorsTc can be made to bc a strong

functionof an appliedelectricfieldbecause thenormal carrierdensitiesinthesernatcrialsarcan orderof

magnitude lessthan inmetallicsuperconductors.Moreover, carrierdensityin ceramicscan be tailoredby

doping [22].

Figure 5a shows a superconducting electric field-effect device [21]. This structure consists of a thin

channel a few thousand A thick and 5-50[.trn wide, consisting of the superconducting material with two

pads at each end to allow four point resistance measurements. Ohmic contacts were made directly to the

superconductor by attaching 2 mil gold wires with a wedge wire bonder. A Schottlq, contact was made

to the superconductor structure midway along the channel by depositing on the sample 10nm of titanium

followed by 200rim of gold by evaporation. It is believed that interaction of titanium with the oxygen in

the superconducting material is responsible for the Schottky behavior. Patterning of this contact was

done by the lift-off technique, o.15 _ " " .... ' ' '

SuperconductingSinN, Go|d_il.tniumOat_

I,'X's , IIs ¢ s, " "A¢_,_, s t • l_

,,
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Figure 5 a) Schematic of an electric field-effect superconducting transistor, b) The resistance

versus temperature characteristics of the electric field-effect transistor with two

different gate biases of 0 and 2 volts. The channel current was 0.5 mA. The channel

width was 10 _m and its thickness was 2000 A. The gate width was 10 pm.

The AC resistance of the channel at lkHz was measured as a function of temperature while different DC

voltages were applied across the Schottky contact and the ground pads (see Figure 5b). As Figure 5b



shows,thetransitiontemperatureof thechannelcanbeloweredconsiderablyby thisvoltage.For this
device,theinfluenceon thetransitiontemperatureis dueto thecriticalcurrentbeingexceededby the

appliedgatevoltage.Wearenowrefiningour fabricationprocedureto takeadvantageof weaklinks

betweenthesuperconductinggrainsandtomodulatethecurrentbymodifyingtheintergranularbarrier

heightsusing the electric field effect. This device can switch between a zero resistance _md several

hundred Ohms if it is maintained just below the transition temperature at T s (Figure 5b).

Field-effect switches have an "on" resistance of 0 I'_ and an "off" resistance of 0.1-4 kfL In microwave

application, their kinetic inductance and skin resistance must also be taken into account in calculating their

"on" impedance. These switches are about 501.tin x 1000l.tm, and they can easily be scaled down to the

size of a typical semiconductor FET.

Fabrication of the active field-effect superconducting device is slightly more involved than that of a

bolometric device, because it requires an insulating layer between its channel and gate. However, the lift-

off technique has been conveniently used to define the insulating layer, as discussed in reference 21.

Since the gate voltage or current (in the case of magnetic field effect devices) can be used to change the

channel resistance, the requirement of spatial uniformity of T c is not as stringent for field-effect devices

as it is for the bolometric devices.

Longitudinal Electric Field Effect Devices. A pseudo-three-terminal switch is shown in Figure

6. In this device, exceeding the critical current density between the gate and the source turns off the

superconducting drain-to-source channel. This device offers very poor input-to-output isolation (almost

Zero) and excellent off-to-on resistance ratio (almost infinity). It is also extremely easy to fabricate and

does not require a heat or light source. Current sources have large impedances; for this device to work,

the impedance of the switch in both the "on" and "off" states must be smaller than that of the biasing

circuit at microwave frequencies.

R [1

I I I l I I I TI_ I 1 I 1 I I I II

II LLA_J__L__I__L_LAJ__LJ_JII L
ll,[ 1 | I I i 1 ] 1 i | I ] Ill

Figure 6 Schematic of a longitudinal electric field-effect device.



IV. DISCUSSION & CONCLUSION

To compare the performance of the above devices, we show their pertinent parameters in Table I. In this

table "speed" is the inherent switching speed of the corresponding device. The off-to-on resistance ratio

is denoted by "Roff/Ron" and is measured at dc. For bolometric devices, Roft4Ron is not infinite because

these devices are thermally biased slightly above their zero-resistance state for maximum responsivity.

The capacitance in the off state is denoted by "Coff" and is measured at 1MHz. A more relevant parameter

in analysing the superconducting microwave switch is its kinetic inductance and skin resistance. We have

not considered these here. High-frequency considerations will only result in somewhat lower off-to-on

impedance ratios. The power needed to turn on a device is denoted by "P." This power is only an

estimate and, therefore, it is discussed qualitatively. The isolation between the input (control signal) and

the output (microwave) is denoted by "in/out isolation." For bolometric and photonic devices, the input-

output isolation is very large, almost infinite. Size is denoted qualitatively, taking into account the entire

circuit. The complexity of the switching circuit and its fabrication are also described qualitatively, lightly

taking into account the fabrication steps and issues. Table I shows that the bolometric switches are very

easy to fabricate and that they offer excellent input-to-output isolation as well as a good off-to-on

resistance ratio. Their only drawback is their speed. Non-bolometric superconducting switches, on the

other hand, are very fast.
TABLE I

Device

PIN

Speed

200

R off

Ron

4xlO 6

8xlO 4

Coff

(pF)

0.4

Power

h_h

medMESFET <1 0.4

MISFET <1 105 0.2 low

Bolometr_ 10 4 > I0 7 < 0.1 h_h

Phot_nic 10 "3 - < O. 1 low

0.1 <0.1

0.4

LEFET #

>10 7

r_d.

low

:lmafl

S_.e

n'_d.

sr_Jl

Circuit

/Fabric.

high

rr_d.sm_U

l_e small m_d.

- reed, low

- meal. h_h

med.low

high rned.

med.

med.

# Longitudinal ElectricField-EffectTransistor.

$ _wrse ElectricField-Effect_ist_r.
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